Mansoura University

Faculty of Engineering

Mech. Power Engg. Depart.

Date: 19 / 1 / 2010

Time Allow.: 3 Hours

Second Year, First Semester

Final Exam. of "THEORY OF MACHINES"

## Question: 1

20 % of full mark

The epicyclic gear train consists of gears 3, 4, 5, and 6, as shown in fig.(1), is driven by a simple gear train consists of gears 2 and 3 (gear 3 belongs to both gear trains). If given that;  $n_2 = +30$  rpm and  $n_{arm} = -90$  rpm, determine for each gear in the gear train:

a) The magnitude of angular velocity (in rpm), and

b) The direction of rotation of each gear (Include ( $\pm$ ) sense of rotation).



## Question: 2

20 % of full mark

Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The masses are 12 kg, 10 kg, 18 kg and 15 kg respectively and their radii of rotations are 4 cm, 5 cm, 6 cm and 3 cm. The angular position of the masses B, C, and D are  $60^{\circ}$ ,  $135^{\circ}$  and  $270^{\circ}$  from the mass A.

Find the magnitude and position of the balancing mass at a radios of 10 cm.

## Question: 3

#### 40 % of full mark

The mechanism shown in Figure (2), is used to stamp cartons as they pass on a conveyor belt. The driver link O<sub>2</sub> A rotates counterclockwise, with angular velocity of 3.14 rad/sec and angular acceleration of 6 rad/sec<sup>2</sup>.

- a) Is there any Coriolis acceleration in this problem? (Y/N)
- b) Determine the angular velocities and angular accelerations of links AB, and B O<sub>4</sub>.
- c) Determine the absolute velocity and acceleration of the stamp (point X).



# Question: 4

### 25 % of full mark

Find the mechanical advantage  $(F_{out}/F_{in})$  for the linkage shown to the right, with:  $O_2O_4 = 50$  cm;  $O_2A = 20$  cm; AB = 70 cm;  $BO_4 = 70$  cm:

The input force acts at the pin joint and is always perpendicular to link 2 while the output force acts midway along link 4 and is perpendicular to link 4.



\*\*\*\*\*\*\*\*

With my Best Wishes and Good Luck for you &

Dr. Samy El-Gayyar